
J .  Fluid Mech. (1965), vol. 23, part 2, pp. 241-260 

Printed in Great Britain 
241 

The swimming of minute organisms 

By A. J. REYNOLDS 
Department of Civil Engineering and Applied Mechanics, 

McGill University, Montreal 

(Received 27 January 1965) 

Some of the processes relevant to the propulsion of small organisms are investi- 
gated using the simple mathematical model of two-dimensional waves passing 
through a sheet immersed in a viscous fluid. This model was first used by Taylor, 
who considered an inextensible sheet moving in an unbounded fluid of negligible 
inertia. Here the effects of fluid inertia, of straining of the wave-bearing surface, 
and of nearby walls are included in the study. The applicability of the results 
is restricted both by the unrealistic geometry of the model and by the method 
of analysis which gives results valid for small Reynolds numbers and for small 
wave amplitudes only. However, the following general results may have counter- 
parts in nature. 

The effect of fluid inertia is to increase the propulsive speed for a particular 
wave amplitude. Straining of the waving surface will probably reduce the pro- 
pulsive velocity for a given amplitude, although there exist modes of surface 
straining that give augmented propulsion. If the wave celerity and the energy 
output in swimming remain constant in the presence of a solid wall, the amplitude 
of the wave is reduced as the wall is approached while the propulsive speed first 
rises slightly and then drops. It appears further that an organism swimming 
near a wall may induce a shear pattern which directs it away from the wall. 

1. Introduction 
In  elucidating the means of propulsion of microscopic organisms Taylor (1951) 

considered the simple motion set up in an infinite fluid by a train of two-dimen- 
sional waves travelling across an inextensible sheet. He based his analysis on the 
biharmonic equation 

for the stream function of a two-dimensional, viscosity-controlled flow. Taking 
v49+ = 0 (1) 

the waving surface to be 
y = b sin (kz + crt), 

and linearizing the boundary conditions, he found the first-order solution 

$ = - (ba /k )  (1 + kg) e--kv sin (kx .+ d) for y > 0,  (3) 
a solution indicating vanishingly small velocities far from the sheet, and hence 
suggesting that the sheet is not propelled through the fluid. 

But when the boundary condition for an inextensible sheet was applied more 
accurately (by expanding all the relevant quantities in powers of blc) Taylor 
had to include in the stream function terms of the form 

$ = (u/k)(a,b2k2+a2bPk4+ ...)y 
16 Fluid Mech. 23 
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(al, a2, etc., are numerical constants), giving rise to a uniform velocity parallel 
to the waving sheet.? Alternatively, if the fluid is taken to be at rest far from the 
sheet, the sheet is found to be propelled in the direction opposite to that of the 
propagation of the distorting wave. Taking terms as high as the fourth order in 
the parameter bk into account, Taylor found the propulsive velocity to be 

V /  U = $b2k2( 1 - 5; b2k2), (4) 

where U = a/k is the wave speed. 
It is proposed here to generalize Taylor’s study in three respects, considering 

finite inertia of the perturbed fluid, extensibility of the waving sheet, and rigid 
walls lying parallel to the mean surface of the wave-bearing sheet. 

Since Taylor’s study was intended to apply to the swimming of very tiny 
organisms (such as bull spermatozoa, for which the Reynolds number based on 
wavelength is about 10-2 and that based on tail diameter 10-4), his neglect of 
the inertia of the fluid was quite appropriate. At the other extreme, in the study 
of the swimming of large animals, inviscid flow theory can be applied to investi- 
gate the means of propulsion (although a separate calculation of friction drag is 
then necessary). But there will exist an intermediate range in which inertia 
and viscosity both influence propulsion; it is here that the first generalization 
of Taylor’s problem may be applicable. For comparison, the influence of inertia 
in a closely allied forced motion will be considered also. 

The most obvious way in which straining of the wave-bearing surface may 
arise is in maintaining the wave. But it is possible also that internal mechanisms 
of the swimming organism give rise to flexings of the surface, which, combined 
with the deflexions due to waving, produce augmented propulsion. This second 
class of propulsive motions has been described as ‘squirming ’ byLighthill(1952), 
who studied the motion of a sphere whose surface both pulsed and strained. In  
the present investigation of sheet extension the probable effect of simple waving 
will be considered as well as the possibility of propulsion by combined waving and 
squirming. 

Interest in the motions of small organisms close to solid walls arises for several 
reasons. There is some reason to think that viscous interactions will draw a 
swimmer towards a nearby wall. But even if this were not the case, the natural 
swimming of tiny organisms will often take place in narrow passages in which 
close proximity of solid surfaces is a geometrical necessity. Finally, the exigencies 
of laboratory technique sometimes require that the organisms studied be those 
very near a solid wall. Thus the problem of swimming near a wall may be expected 
to have greater practical application than that of motion in an unbounded 
fluid. $ 

In  view of the important differences between the propulsive motions considered 
here and those occurring in nature (especially the restriction here to two- 

? Since the propulsive velocity, if it exists, must be independent of the sign of b, it 
is apparent a priori that it can be expanded in this form. This is true only for an in- 
extensible sheet. 

$ This paragraph owes much to discussions with Lord Rothschild concerning experi- 
mental techniques. 
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dimensionality), any close agreement of measured propulsive velocities with 
those predicted will be purely fortuitous. However, we may hope that the 
essential features of the physical situation have been represented well enough 
to provide a realistic appreciation of qualitative effects. 

2. The influence of inertia of the fluid 
The full Navier-Stokes equations form the basis of this investigation. In  view 

of their complexity, we can hope to deal only with the simplest of perturbing 
motions. Taylor’s problem of a waving sheet is chosen: it is one for which the 
construction of solutions is quite straightforward; also there is the opportunity 
for comparison with his results at each stage. 

Although the results obtained here are formally valid for any Reynolds number 
(if the wave amplitude be small enough), their application to real swimming 
motions must be severely restricted. At any but the smallest Reynolds numbers, 
separation of the flow from the waving body must occur and the accompanying 
cyclic shedding of vorticity will establish circulations about the rear of the body 
and so give rise to forces other than those which act on an infinite wave train. 

The fundamental process of the analysis is the systematic expansion of stream 
function, boundary conditions, and wave profile in terms of an amplitude para- 
meter. A series of equations for the terms of the stream function is obtained, 
together with appropriate boundary conditions. Solutions can easily be con- 
structed for the first few of the successive problems; only patience is required for 
an arbitrary degree of accuracy. 

As a preliminary to the formal analysis, we should perhaps make a few remarks 
concerning the frames of reference to be considered, the several characteristic 
velocities which will subsequently be utilized, and the relationships among them. 
In most of the work we shall follow Taylor in adopting a frame of reference moving 
with the crests of the waves travelling through the sheet. As may be seen from 
figure 1, these crests move with respect to the fluid at infinity with velocity 
u = - U + V ,  so that in the frame of reference in which they are at rest, the fluid 
at infinity moves with velocity u = U -  V.  

Taylor noted, with characteristic insight, that the waving motion of an in- 
extensive sheet was, in the frame of reference in which the crests are stationary, 
equivalent simply to the motion of each particle of the sheet tangentially along 
its sinusoidal path, each and every particle having the same constant speed, aay 
Qo. We shall later relax this requirement somewhat in order to study motions 
including ‘squirming’, although even then it is satisfied in the mean. The ratio 
of the sheet speed Qo and the wave celerity U is just the ratio of the developed 
length of the sine curve to the chord length measured in its mean plane, and thus 
depends on the amplitude parameter bk in a simple way 

Qo/u = lb2k2+ .... 
For analytic convenience we shall take as the basic motion of our analysis 

u = Qo. 

This differs from U only a t  the second order in bk, and tends to it as bk -+ 0. 
We shall determine the perturbation to this basic flow as a result of the sheet’s 

16-2 
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motion and finally fasten our attention on that part of the perturbation which is 
uniform throughout the field, neither varying sinusoidall y with distance x 
along the sheet, nor dying out exponentially away from the plate, as do those 
contributions that do vary sinusoidally with x. This uniform component of 
the perturbation we shall denote by Au. Then far away from the sheet 

u = Q0+Au, 

where Au depends on the amplitude parameter, and Qo differs from U by an 
amount depending on that parameter. 

To determine the propulsive velocity we equate the two expressions we have 
obtained for the velocity far from the waving sheet, obtaining 

U -  V = QO+Au. 

u = 0 far from sheet u - U - V far from sheet - 

U 

Sheet profile 
y = bsinK(x+{U- V} t )  

Sheet profile 
y=b sin kx 

(a> (b )  
FIGURE 1. Frames of reference. ( a )  Frame of reference in which fluid far from the waving 
sheet is at  rest. U ,  the celerity of the waves through the sheet ; V ,  the speed at  which the 
sheet progresses relative to the fluid far from it ; ( U - V ) ,  the apparent speed of propa- 
gation (of wave crests to the left). ( b )  Frame of reference in which wave profile is at rest. 
Qo, the sheet speed, the tangential velocity of the particles of the inextensible sheet as 
seen in this frame. 

(a)  Fundamental problem 

For a two-dimensional motion we can introduce a stream function related to the 
velocity components by 

automatically satisfying the continuity equation for incompressible fluid and 
allowing the Navier-Stokes equations for steady flow to be combined to give 

u = -agjay, v =  a+jax, 

We consider the motion set up by a sinusoidal sheet, given by 

y = b sin (kx) 
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moving tangentially to itself with velocity Qo. Then on the sheet 

u = Q, cos 8, v = Q, sin 8, 

< 6' < $r). with tan 8 = bk cos (kx) (for Q, > 0, - 
The boundary conditions for $ are 
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a$/ax = Qo sin [tan-' (bk cos kx)], 

a$/ay = - Q, cos [tan-l(bk cos kx)] 
( 6 4  

( 6 b )  

on the sheet. We require also that the flow far from the sheet be uniform and 
parallel to it, that is, that $ 0 ~  y far from the sheet. Throughout we shall consider 
the region for which y > 0. 

The problem thus posed is that of a wave train travelling through an in- 
extensible sheet immersed in a fluid which is at rest except for the perturbations 
set up by the wave. 

(b)  Equations for  successive approximations 

We consider the stream function as $(x, y; a),  with a some measure of the ampli- 
tude (later we shall take a: = bk) and expand in terms of a 

$ = -&Oy+"$1+"2$2+ * . * 7  ( 7 )  

where $, = -Qoy represents the undisturbed fluid in the present frame of 
reference (as a -+ 0,  Q, -+ U ) .  

Substituting this series into equation ( 5 ) ,  collecting the terms of each order 
in a, and requiring that the equation be satisfied for all small values of a, we obtain 
a series of equations for the terms of the expansion: 

The first term is governed now by an Oseen equation in which the dominant 
acceleration term is included. In  later equations Oseen's linear operator recurs 
and the non-linear acceleration terms are approximated using the contributions 
of lower order. However, each equation is linear in the yet-to-be-determined 
term of the expansion ( 7 ) .  

In  passing, we may comment on a point of primarily mathematical interest. 
For the examples considered here, the non-constant contributions to the velocity 
perturbation vary (as do the boundary conditions) sinusoidally with x ,  distance 
measured along the waving sheet, and decrease exponentially with distance away 
from the sheet. Hence the Oseen approximation with which our analysis begins 
provides a first approximation which is uniformly valid throughout the fluid. 
It is then unnecessary to adopt the recently developed methods of matching 
inner and outer expansions to obtain approximations which are everywhere 
realistic. 
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(c) Boundary conditions for successive approximations 
We can expand the boundary conditions as series in a too, 

(9) 
a$/ax = afl(x) + a”fi(X) + a3j3(x) + . . . 
a$/ay = - Qo + &(x) + a2h2(x) + . . . 

to  be applied on the sheet y = ag(x), introducing h, = - &,immediately to match 
the first term of the condition (6b ) .  These components can also be expressed using 
Taylor’s series evaluated a t  y = ag: 

Equating alternative expressions (9) and (lo),  substituting the expansion for 
the stream function (7),  and again collecting terms of like order in a, we obtain 
the following series of boundary conditions to be applied in the plane y = 0 

a l l  Wl 
- =.f1(z), -- = h,(x); ax aY 

etc. This treatment of the boundary conditions is equivalent to Taylor’s, al- 
though here their application has been separated into distinct stages. 

The functionsfi(x), h,(x) introduced in (9) are obtained simply by expanding 
the exact conditions (6a, b ) :  

a$/ax = ~ ~ [ a  cos ( k ~ )  - ~~3 C O S ~  ( k ~ )  + ;z~5 coss (kx) + . . .I. 
a$/ay = - ~ ~ [ i  - ~ a 2 ~ 0 ~ 2 ( k ~ ) + ~ a 4 ~ 0 ~ 4 ( k ~ ) +  ...I, 

( 6 4  

( 6 4  

where we have now taken a = bk as the amplitude parameter. 
The simplicity of these results provides the justification for adopting @ = - Qo y 

(go  = const., U = U(a))  as the basic flow, rather than 4 = - Uy ( U  = const., 
Qo = Qo(a)). Neither of the two correctly represents the uniform flow at 
infinity, u = U -  V ,  both differing from it by a term -O(a2) .  However, the 
second choice, $ = - Uy, would result in more complicated forms for the 
coefficients of a in 6(c,  d ) .  

( d )  First-order solution 
l!he boundary conditions for $l are 

a@.,/ax = Qo cos ( k ~ ) ,  a@-,/ay = 0 on y = 0. 

The form of these conditions and of the equation (8) for @1 suggests that a solu- 
tion of the form 

$1 = f (Y) eikx 
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be sought. Elementary solutions bounded as y -+ + co are 

f ( y )  = e--lzu, exp [ - ,8kyei$], 
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with 
and tan24 = s, 0 < 6 < in-. 

= (1 + s2)a, where s = QO/vk is a Reynolds number based on sheet velocity, 

The solution satisfying the boundary conditions is 

$l = [Qo/k( 1 + p2 - 2/3 cos qb) ]  [ - pe--lzY{sin (kx  + qb)  - /3 sin ( k x ) )  
+ e-flkucos 4 {sin (kx  - kpy  sin qb)  -psin (kx  - p k y  - $ ) } I .  (12) 

A .  Limiting case of small viscosity, s -+ co. 
--f $A = (Qo/k) e-kusin (kx ) ,  except for very small y. Save in a thin layer near 

the surface, the solution degenerates to the irrotational motion prescribed by 
the normal velocity of the sheet. 

B. Limiting case of large viscosity, s -+ 0. 

ll.l --f ll.B = (Qo/k)  (1 + k y )  e-kusin ( k x )  if y Q v/Qo. 

This is equivalent to the solution (3) found by Taylor on neglecting all acceler- 
ation terms. Once again the perturbations diminish quickly away from the 
sheet. But note that 

11.B/$A 2: kvlQo as y + V l Q o  B 1. 

Taylor's liniit is approached only for y < v/Q0. It is within this region that the 
inertia terms he neglected are in fact small compared to the viscous forces. 

The motion given by equation (12) for finite Reynolds number may be thought 
of as a superposition of the potential motion of limit A (dominant far from the 
sheet) and an unsteady boundary layer (like that sketched by Schlichting 1955, 
p. 68) decaying exponentially away from the surface, but satisfying the no- 
slip condition at the sheet. 

( e )  Xecond-order propulsive velocity 

The boundary conditions for $2 are found to be a$.,/ax = 0, 

ag2 /ay  = i ~ ~ [ i - ( i  +p) (1 - p ~ ~ ~ ~ ~ ~ ~ i + p ~ - 2 p ~ ~ ~ q b ~ ~  [i +COS p k x ) ]  
- &Qop sin qi sin (2kx)  on y = 0. 

It is no longer sufficient to construct a solution purely from sinusoidal terms. 
They cannot give rise to the constant term in a$2/ay required to satisfy the 
boundary conditions. The uniform velocity which must be introduced to satisfy 
the second-order boundary conditions is 

AU = - ~ l ' & Q ~ [ s  - (1 +p2)  (1 - /3 cos $)I( 1 +p2 - 2/3 cos $)I. 
As was explained earlier, the sheet velocity Qo, wave velocity U ,  propulsive 
speed V ,  and the perturbation contribution to the velocity far from the sheet 
A u  are related by 

I J -  V = QO+AU, 
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while the wave speed and sheet velocity are related by 

- 
6 4  

- Qo = 
U chord length of wave 

arc length of wave - 1 + p ~ 2 - - 3 - b 4 1 ~ 4 +  .... 

Then, to the second order in a, 
, V Au a2 -=---- 

u Qo 4 ’  
(13) 

and the first term in the series for the propulsive velocity can be written 

with cos 4 = [( 1 + p2))/2/3]$. 

Considering again the limiting cases : 

A .  Xmall viscosity, s + oc). 

B. Large viscosity, s -+ 0. 

This is just Taylor’s second-order result (cf. equation (4)). 

propulsion, the reader is referred to the lucid analysis of Taylor (1951). 

a range of small values of s. 

V / U  -+ ~a2(2Qo/vk)~ .  

VlU --f i a 2 .  

For a discussion of the physical processes near the sheet which give rise to 

In  table 1 the variation of the second-order propulsive velocity is indicated for 

S 0 1  2 3 4  

1.00 1.10 1-26 1.44 1.60 

TABLE 1. Variation of propulsive velocity with Reynolds number 

The labour of carrying these calculations to the fourth order is very much 
greater than it is for the limiting case treated by Taylor and will not be under- 
taken. From Taylor’s result (4) we find that the fourth-order contribution is 
equal to 25 % of the second order when a = bk 1: 0.46 for s = 0. For s + 0, 
the second-order term in the propulsive velocity will be a useful approximation 
for an even small range of amplitude, since the higher-order terms include pro- 
gressively higher powers of s. 

3. An allied case of forced motion 

to the pulsing surface given by 
A motion which is closely related to that set up by a waving sheet is that due 

y = b sin (gt)  cos (kx), 

whose every point moves in a straight line so that the surface velocity is given by 

u = 0, w = b~cos (a t ) c~s (kx) .  

The motion excited is a simple case of what is termed ‘acoustic streaming’. 
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Once again we expand the stream function in an amplitude parameter a 

$(x,y, t;  a )  = a$1+a2$2+a3$3+.... 

The equations for the successive terms are now obtained from the Navier- 
Stokes equations written in the form 

and are 

etc. In  the basic operator account is again taken of the dominant acceleration 
term, now a time derivative. 

Generalizing the boundary conditions as 

we obtain the conditions 

etc. .We shall take a = b simply, so that 

f = ccos  (a t )  cos (kz), g = sin (a t )  cos fkx). 

( a )  First-order solution 

a@lpx = g c o s ( d )  cos (kx), a$llay = 0 on y = 0. 

The appropriate solution is found to be 

= [cr/k(l+p2-22pcosq5)] [ - ~ e - ~ ~ { ~ 0 ~ ( a t + q 5 ) - ~ c o s ( a t ) }  
+ e-Bku ${cos (at  - pky sin q5) - p cos ( c t  - pky sin q5 - $)}I sin kx, (14) 

with p = (1 + s’2)9, s’ = crlvk2, tan 2 4  = s’. 

This solution differs only trivially from the first approximation (12) to the flow 
established by a wave travelling through an inextensible sheet: simple super- 
positions of one kind of solution give the other. In  the viscous limit (s’ -+ 0) we 
have 

This first-order motion may be thought of as a superposition of those sketched 
by Lamb (1932, p. 366) and Schlichting (1955, p. 68). 

+ (a//k) (1 + Icy) e-ku sin (kx) cos (a t )  for y < vk/u. 

(b )  Xecond-order steady motion 

The boundary conditions for $2 are found to be 

a$2/ax = 0, = c sin (2kx) - c cos ( 2 v t )  sin (2kx) + d sin (2at) sin (2kz)  
on y =  0, 

with 
d = --a a k( 1 +p2) [( 1 -pcos $)I( 1 +p2- 2pcos $)I, c = - igkpsin q5. 
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To satisfy them we must include a steady term in the second-order contribution 

y92 = cy e--2kY sin (2kz) .  to $, 

The corresponding stream-function is in fact 

+s = az$2 = - $b%k [+(bz- 1)]+ ye-zh sin (2kz). 

Even though the first-order solutions (13) and ( 4 )  are essentially equivalent, 
the steady secondary motions arising from them are very different. This flow 
is composed of cells in which there is steady flow towards the sheet a t  ‘loops’ 

Limits of motion 
of pulsing sheet 

Node Loop Node 
FIGURE 2. Second-order flow established by a pulsing surface. 

of the primary motion and away from the sheet at its ‘nodes’. The pattern is 
sketched in figure 2. It is quite possible that higher-order terms will reverse 
these relationships a t  large amplitudes and Reynolds numbers. 

A. Ca-se of small viscosity, s’ -+ 00. 

y9$ -+ - $b%k (a/2vk2)*ye-2kgsin (2kx). 

H. C’nse of large viscosity, s‘ -+ 0. 

II., + - $b2crk (cr/2vkz) ye-2kY sin (2kx) 

+ 0 for all y > 0. 

In  this limit no steady second-order motion is found. 

4. The extensible sheet 
For simplicity we shall henceforth neglect the inertia of the fluid, the appro- 

priate field equation then becoming the biharmonic equation (1). Again we 
consider waves travelling in a sheet, using the frame of reference in which the 
wave profile is at rest and given by 

y = b sin (kz). 
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But now we treat the more general case of a sheet whose surface strains as it 
waves, and to do so represent the velocity of the sheet along the stationary wave 
profile by Q = Q,[l+Ssin(nkx+y)], 

so that u = Q cos q5, v = Q sin q5 on the sheet, with tan q5 = bk sin (kx) = dy/dx.  
The two cases n = 1 and n = 2 will be treated in detail. These are the modes 

most likely to be of significance in natural motions; also they will serve as ex- 
emplars of odd and even harmonics. For the moment we leave the phase angle 
y arbitrary, later finding those values giving maximum propulsion for n = 1 
and n = 2, and considering what value might be expected to arise naturally 
from the passage of a wave through the sheet. 

To save the extra labour of expanding in the two parameters a and S we take 
as basic a solution valid for all 6. The expansions (7) and (9) are generalized to 

(15) 

p = p0+ap1+a2$,+ ..., 
aplax =fo+afl+ay2+ ..., 
splay = ho + ah, + a2h2 + . . . , 

and give rise to the boundary conditions: 

WoPx = f o .  w o / a Y  = ho, 

etc. As before we take a = bk, g = (l/k) sin (kx). 

(a) Basic solution 

Prom the expansion (6c, d )  we find 

apo/ax = 0, = - Qo [1+ Ssin (nkx+ y) ]  on y = 0. 

The appropriate solution of equation (1) is 

p0 = -Q0y[1 +6e-nhsin(nkx+y)], 

degenerating to give a uniform stream as 6 -+ 0. 
The boundary conditions for p1 are then 

a$,/ax = Q,cos(kx)+Q,S[sin(nkx+~)cos(kz)+ncos(nkx+y)sin(kz)], (16) 

a$,/ay = - QoSn sin (nkx + y )  sin (kx), 
on y = 0. 

(b )  Propulsive velocity for n = 1 

The solution of equation (1)  satisfying the conditions (1 6) for n = 1 is 

pl = (Qo/k) ( 1 + ky ) e-kp sin (kx) - Qo 8y cos y - ( Q0 8/2k)  e-2ku cos (2kx + y ) . 
Note that there is a propulsive contribution of the first order in a. 
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The boundary conditions for $z give 

a@,/ax = sinusoidal terms only, 

and i3$2/8y = fQo + sinusoidal terms. 

To the second order in a the propulsive velocity for the case n = 1 is found to be, 
using the result (13), 

(17) V l U  = gaZ-a6cos y. 

As 6 --f 0, this result becomes equivalent (at the second order) to Taylor’s (4). 
The maximum pTopulsive effect would be achieved for the phase angle y = 180”. 

These results for n = 1 typify those for odd values of n: the contributions to 
the propulsive velocity are unchanged for even powers of a; but further terms 
arise containing odd powers of a coupled with powers of 6, the strain parameter. 

(c)  Propulsive velocity for n = 2 

For n = 2 the solution of equation (1) satisfying the conditions (16) is 

= (&,/k) (1 + ky)  e-”sin (kx) + (QO&//2k) (1  +Icy) e-kucos (kz+ y )  

- ( Q o 6 / 2 k ) ( 1 + 3 k y ) e - 3 ~ ~ c o s ( 3 k x + y )  

- 2Q0 ~[ZJ e-kg cos ( k z  + y )  - y e-3ku cos ( 3kx + y )] . 
There is no propulsive velocity to the first order in a here. 

The boundary conditions for $2 give 

8@z/8x = sinusoidal terms only, 

a@.,/ay = fQo + #&,&sin y + sinusoidal terms. 

Then the second-order propulsive velocity for n = 2 is given by 

V / U  = &a2(1 +$Ysiny). (18) 

The maximum propulsive effect corresponds to y = 90”; again we recover (4) 
ass+  0. 

For other even values of n we may expect similar results, modified contribu- 
tions for even powers of a. 

( d )  Probable eflect of surface strain 

It has been seen that straining of the surface of a waving sheet can alter the pro- 
pelling effect of the waves. Now we try to see what kind of straining is associated 
with the waving, assuming that the simplest pattern of strain consistent with 
the waving is established, and rejecting the possibility that there are complex 
internal mechanisms producing just those surface strains that lead to maximum 
propulsion. This is an attempt to study the ‘involuntary’ straining associated 
with wave propagation, rather than the ‘planned’ squirming capable of moving 
the organism most rapidly through the medium. 

The strain pattern which first comes to mind on considering a waving sheet 
of finite thickness with fluid on both sides is shown in figure 3. This is the pattern 
set up in a uniform elastic beam to which is applied a moment distribution 

Moc sin (kx). 
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However, as Taylor (1951) has shown, the moment distribution in a sheet waving 
in a viscous fluid is Mcc cos (kx), the maximum occurring near the section a t  
which the curvature is zero. The crux of this mild paradox is that the applied 
loads and strains are not directly linked here as they are in an inanimate solid 
beam. For consistency with the present model we must assume that some inter- 
nal mechanism adapts the sheet to its wave form, all the while independently 
resisting the forces so generated. 

Y 

FIGURE 3. Straining of a uniform, elastic beam. 0, Zero strain, maximurn gradient of 
extension; A, maximum extension, zero strain gradient; B, zero strain, maximum gradient 
of compression; C, maximum compression, zero strain gradient. 

In  practice the elemental mechanisms operating in tiny organisms could hardly 
be expected to maintain this balance. Some interaction between wave form and 
viscous forces must be anticipated. Nevertheless, it  seems likely that the mode iso- 
lated above will be an important one in the description of the straining of the 
surface of a waving tail. 

I n  terms of the assumed surface velocity distribution (15) the local rate of 
straining is proportional to 

dQ/dx  K cos (nlcx + y). 

Clearly, to represent the pattern given above we must take n = 1. Also, for a 
maximum rate of straining cosy = 1, whence y = 0". Then for this mode of 
surface distortion the propulsive speed is given by equation (1 7) as 

We conclude that surface straining, although i t  could give increased propulsion 
under certain circumstances, is more likely to reduce the speed of propulsion 
to a value below that associated with the waving of an inextensible surface. 

5. Swimming near a solid wall 
As in $ 2  we consider a sheet given by y = b sin (kx), moving along itself with 

velocity Qo, a constant. But now we take the fluid to be bounded by a rigid 
wall at  y = h (h > b,  necessari1y)f. The boundary conditions to be applied at 
the wall are 

u = const., v =  0 on y =  h. 

t We shall make no reference to the other side of the sheet at this stage. Consideration 
will be given later to superpositions of solutions describing a sheet surrounded by fluid. 
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The conditions to be applied in the mean plane of the waving sheet (y = 0) 
are once again those given by equations (6), (9) and (11). The analysis will be 
based entirely on the biharmonic equation (1). 

The basic flow is taken, as in $2, to be 

u = Qo or $0 = - Qoy? 

the fluid at rest in contact with the wall and sheet, the whole viewed in a frame 
of reference translating with velocity u = -Qo. It will be realized that the 
velocity of the frame of reference relative to the fixed wall will vary with the wave 
amplitude; in this formulation Qo is held fixed while the wave speed varies with 
amplitude. 

(a) First-order solution 
The boundary conditions are 

a$#x = Qo cos (kx), at,kl/ay = 0 on y = 0, 

a$.,/ax = 0, ael/ay = F, a constant on y = h. 

$l = [(A+By)cosh(ky)+(C+Dy)sinh(ky)]sin(kx)+Ey, 
we find that it is necessary to set E = I? = 0 to satisfy these conditions, so that 
the first-order propulsive velocity is zero, as might have been anticipated since 
V(a)  is again an even function. The solution is 

= (Qo/k) [cosh (ky) + c{sinh (ky) - ky cosh (ky)} -I- dky sinh (ky)] sin (kx), (19) 
c = - [cosh (kh) sinh (kh) + kh]/[sinhz (kh) - kzh2], 

Seeking a solution of equation (1) in the form 

with 

d = - sinh2 (kh)/[sinh2 (kh) - k2h2]. 

(b )  Second-order propulsive velocity 

The boundary conditions for eZ are 

a$2/ax = 0, 

a$-,/aX = 0, a$.,/ay = const. on y = h. 

a$2/ay = - )Qo( 1 + 4d) - tQo(3 + 4d)  cos ( 2 k 4  on t~ = 0, 

Once again, by including a uniform-flow term in the second-order solution we 
are able to match the boundary conditions. Using the result (13) we obtain an 
estimate of the propulsive speed: 

sinh2 (kh) + kzh2] 
sinh2(kh)-k2h2 * 

V - = -$(a+') = - 
U 

Note that V / U  > 4a2, the value for an unbounded fluid, for all finite values of kh. 

A .  Limiting case of sheet far from wall, kh -+ 00. 

V / U  + *az. (cf. equation (4)). 

B. Limiting case of sheet close to wall, kh -+ a = kb. 

,sinh2 a - a2 * 
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In  table 2 are given the values of this limiting ratio for a range of 01. in which 
the second-order estimate might be useful. It appears that the propulsive speed 
does not rise beyond three times the wave speed. This high limiting ratio can be 
justified by noting that a large relative speed is necessary to carry fluid through 
the narrow gaps between the wall and the crests of the wave profile. 

We shall see presently that the apparent suggestion of greatly augmented 
propulsion near a wall is quite unrealistic. 

a = kb 0 0.1 0.2 0.3 0.4 0.5 
(VIU), 3.00 3.00 3.00 3.01 3.01 3.02 

TABLE 2. Propulsion near a wall 

( c )  The problem of uniqueness 
None of the mathematical problems that have been studied here has been 
uniquely determined. But in the present case this difficulty is made more glaring 
by the ease with which alternative solutions satisfying the given restrictions 
can be constructed. Terms of the forms. 

+c..c Y2,  Y3  
could have been included in the stream-function for the second-order problem. 
Their only contribution to the boundary conditions is to a$/ay at y = h,  where 
they add a constant velocity and thus alter the propulsive speed. A justification 
for rejecting such contributions is that away from the waving sheet the flow 
must tend ever closer to an undisturbed stream. This argument is convincing 
for large values of h/b but loses some of its force when h/b N O(1). 

An additional line of argument can be advanced against the form $ cc y2. 
It represents a constant-shear flow exerting a second-order shear force on the 
sheet. Computing the pressure distribution corresponding to the first-order 
solution (19), we have 

p = - 2aQ0kp[c cosh (ky) - d sinh (ky)] cos (kx), 
which can be seen to give Taylor’s (1951) result as h --f m. Following the pro- 
cedure he outlined, we compute (to the second-order) the mean pressure drag 
on the waving sheet, 

____ 
Fl = p(dy,/dx) = - b2k3Qopc, with yo = b sin (kx), 

and the mean second-order viscous drag, 

F, = p(au/ay), = b2k3Q0pc, with u = - a(a$l/ay). 

(Here the overbars denote averaging over a wavelength.) Since Fl+ F2 = 0; 
we have self-propulsion without introducing a further second-order force on the 
sheet. 

The addition of a contribution + ot y3 implies that a pressure gradient acts in 
the fluid between the sheet and the wall; a second-order shear stress acts on the 
wall, but not on the sheet. For a sheet symmetrically placed in a channel we rule 
out such contributions on the grounds that they would give rise to a net force on 
the channel. 
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(d )  Swimming in  the centre of a channel 

These results may be interpreted as describing the motion of an organism along 
the centre line of a two-dimensional channel containing fluid at rest save for the 
disturbance of the swimming. They indicate that the propagation of waves along 
an organism in a channel will propel it more rapidly than would the same waves 
in an unbounded fluid. 

A somewhat more realistic view of the efficiency of propulsion through a 
channel may be obtained by requiring that the energy output of the waving sheet 
be constant no matter what the width of the channel. We shall consider the case 
in which the wave amplitude adjusts itself to the channel width so as to  maintain 
constant dissipation, the other parameters (Qo, k, p)? being fixed. 

The mean energy output from the sheet is 

to the second order. Then using equation (20) we have 

V / U  = W(d++) /Qikpc ,  

giving the propulsive speed as an explicit function of c(kh) and d(kh), if W ,  
Qo, k ,  and ,u are fixed. More conveniently, 

and 

whence 

sinh2 (kh) + k2h2 v 2  
V, - c (d+ ’) - cosh (kh) sinh (kh) + kh’ 

[ sinh2(kh)-k2h2 4 
cosh (kh) sinh (kh) + kh 1 ’ 

1 - -  

= ( - c ) - 3  == ______-.__ 
a __ 
a0 

where V, and a. are the propulsive speed and wave amplitude in an unbounded 
fluid. Note that a/ao < 1 for all finite kh. For small kh, 

b/h N a,,(*kh)*, VjV, N kh, 

showing that the wave crests do not approach the wall in this limit and, further, 
that propulsion is ultimately impossible. 

In  table 3 these characteristics of the propulsive motion are shown as functions 
of kh and h / h ( h  = 2n/k). We see that the ratio of amplitude to channel width 
attains a maximum between kh = 1 and kh = 2. Only a small increase in pro- 
pulsive speed occurs as the channel width is reduced; in very small channels pro- 
pulsion is less efficient than in an unbounded fluid. The wave amplitude drops off 
more quickly than the propulsive speed. 

The present analysis has not taken account of the possibility that an organism 
might be stimulated to a greater or reduced effort when the amplitude of its tail 
waving is Testricted by the presence of a wall, Further, an organism swimming 

t These restrictions are made for heuristic purposes only. There is no precise observa- 
tional justification for holding constant the wavelength and (very nearly) the wave celerity, 
as we do here. 
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near a plane wall, or in a narrow cell, is still able in actuality to move its tail with 
relative freedom in a plane parallel to the wall. Nevertheless, the analysis does 
suggest that large increases in propulsive speed will not be possible unless the 
energy output is increased significantly. On the other hand, the necessity of 
swimming near a wall seems unlikely to reduce the velocity of an organism's pro- 
gress, even though the vigour of the propelling motion may appear to be reduced 
if judged directly by observations of amplitude. 

kh 
0 
1 
2 
3 
4 
5 
m 

hlh 
0 
0.159 
0.318 
0.478 
0.638 
0.796 
00 

TABLE 3. 

4% 
0 
0.368 
0.765 
0.939 
0.986 
0.998 
1.000 

bl% h 
0 
0.368 
0.383 
0.312 
0.246 
0.200 
0 

Propulsion in a channel 

VIV, 
0 
0.846 
1.096 
1.053 
1.017 
1-002 
1.000 

I y  
\ \ \ \ \ \ \ ' 

Wall 1 4 ' 

V - 
Mean plane of X 

I 

Wall 2 \ \ \ \ \ \ 

FIGURE 4. Waving sheet asymmetrically located in a channel. The variation of the 
steady second-order component of the velocity, u ( y ) ,  is shown. U and V are the wave 
velocity and sheet propagation speed, respectively. 

( e )  Swimming not along channel centre line 

We consider now a waving sheet which is asymmetrically located in a two-dimen- 
sional channel, as illustrated in figure 4. 

The first-order solution can be written down immediately from the result (19): 
For the region above the sheet 

$, = (Qo /k )  [cosh (ky) + c,{sinh (ky) - ky cosh (ky)} + d,ky sinh (Icy)] sin (kx), 
where c1 = c with h = h,, d, = d with h = h,. 

For the region below the sheet 

= (Qo/k)[cosh (ky) - c,{sinh (ky) - ky cosh (ky)} +d,kysinh (ky)] sin (kx), 
where c, = c with h = h,, d, = d with h = h,. 

17 Fluid Mech. 23 
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In attempting to determine the second-order motion we encounter a difficulty 
-the velocity differences between the sheet and the two walls predicted by the 
second-order solution (20) are not the same. To remove this inequality we add 
terms @ cc y2 to the second-order stream functionsfor the regions above and below 
the sheet. It has been shown that the net second-order drag on the sheet for 
motions given by equation (19) is zero. The added terms $ oc y2 will give rise to 
additional second-order drag forces. If the sheet is to be self-propelling these 
must be equal and opposite. Then the added terms must represent a simple 
shear flow with a velocity gradient which is constant across the channel, that 
gradient being chosen to make the two relative wall velocities equal. 

Repeating this argument in symbolic form, we take 

$, = a,y + b, y2 + sinusoidal terms 

@2 = a, y + b, y2+ sinusoidal terms 

(above the sheet), 

(below the sheet). 

To satisfy the boundary conditions on the sheet we must have 

a, = - $Qo( 1 + a,), a2 = - &?o( 1 f 4d2). 

Now a@,/ay = a, + 26, y + sinusoidal terms 

a@,/ay = a2 + 2b, y + sinusoidal terms 

(above), 

(below). 

Requiring the constant terms at  the boundaries to be equal, we have 

Au = a, + 2b,h, = a, - 2b2h,. (21 b )  
Further a2@2/ay2 = 2b, + sinusoidal terms (above), 

(below). a2$2/ay2 = 2b2 + sinusoidal terms 

If  the second-order shear is to be continuous across the sheet we must take 

b, = b,. (21 4 
The equations (21) are sufficient to determine the steady component of the 

second-order motion. Solving, and using the result (13), we have for the pro- 
pulsive velocity 

v/u = *a2[ - (1  + d, + d,) + (d, - d,) (h, - h,)/(h,+ h,)], 

au/ay = - 2b1a2 = - a 2 ~ ~  ( d ,  - d,)/(h, + h,). 

d,-d, < 0 and au/ay > 0. 

The steady component of the second-order flow is sketched in figure 4. Accord- 
ing to the description we have evolved, there is a jump across the sheet of 
a2Qo(d,-d2) in the second-order mean velocity, and a net mass flux in the 
direction of propulsion. This flux could be removed by introducing terms of the 
form $ a y3 into the stream function. However, it  is not obvious that this ‘re- 
finement ’ would give more insight into the three-dimensional motions (those 
about flagella of finite length) that are of ultimate interest. 

and for the basic velocity gradient 

For the case in which h, < h,, as shown in figure 4, 
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The shear stresses in the fluid tend to drag the far wall after the sheet (that is, 
in the direction of propulsion) and to push the near wall backwards in the direc- 
tion of wave propagation. The net drag on the channel is, of course, still zero. 
If a basically similar system of shears were set up around an organism swimming 
near a solid surface, it  would be subjected to the shear stresses indicated in 
figure 5. This system would tend to rotate the organism’s head away from the 
wall and thus to direct its swimming away from the surface. 

Nearest solid surface 
\ \ \ \ \ \ \ \ \ 

Direction of 
wave propagation 

Direction of 
propulsion 

FIGURE 5. Organism of finite length swimming near a wall. The arrows on either side of 
t.he sheet indicate the directions of the postulated mean shear stresses. 

It seems likely that this mechanism would lower the concentration of swimming 
organisms near the walls of a container below that in the body of the fluid. 
This conclusion is not in accord with the opinions of observers of the swimming 
of spermatozoa, although no systematic observations have been made to decide 
the question, so far as is known. 

Perhaps some further justification is necessary for adding terms @ cc y2 in 
this case, while rejecting them in the previous analysis. So far as the fluid on 
one side is concerned, the sheet is no longer self-propelled in this asymmetric case. 
By virtue of its off-centre position it exerts a net force on the fluid on each side; 
this force must be transmitted to the channel wall. Then the requirement that 
the flow approach a uniform stream far from the sheet is here quite unrealistic 
and must be replaced by the requirement of a uniform shear flow far from the 
sheet. All the relevant earlier results are recovered as special cases of the results 
obtained on this basis. 

6. Summary of results 

a waving sheet. 
Here are gathered together the several expressions for the propulsive speed of 

The wave profile is y = b sin k(z + Ut) = b sin (kz + of). 
Effect of JEuid inertia. 

V cos 4 
cos $J - 11p 

with 01 = bk, s = U/vk, /3 = (1 + s2)), cos 4 = [( 1 + p2)/2p2]*. 
Effect of straining of waving sheet. 

For surface velocity, 
Q = Qo[l+Gsin(nkx+y)]. 

V /  U = &x2( 1 + 28 sin y ) . 
For n = 1, 
For n = 2, 

v/ u = +a2 -as cos y. 

17-2 
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Effect of nearby walls. 

Waving sheet in centre of channel of width 2h, 

__ ; = I 2  zu lsinha(Ich)+k2h2] 
sinh2 (kh) - k2h2 ' 

Waving sheet in a channel, distance h, from one wall and h, from other, 

V / U  = 4u2[- (1+d,+d,)+(h1-hJ (dl-dz)/(hi+h2)], 
with d = - sinh2 (kh)/[sinh2 (kh) - Ic2h2]. 

I should like to thank Lord Rothschild for introducing me to this subject and 
to acknowledge profitable discussions with both him and Sir Geoffrey Taylor. 
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